Gjeldende klokkeslett:0:00Total varighet:2:18
0 energipoeng
Studying for a test? Prepare with these 3 lessons on Irrasjonale tall.
See 3 lessons

Klassifisere tall: rasjonale og irrasjonale

Video transcript
Hvilket av de følgene reelle tallene er irrasjonale tall? Vel, irrasjonal betyr bare at det ikke er rasjonalt. Det betyr at du kan ikke uttrykke det som ratioen av to heltall. Så la oss se hva vi har her. Så vi har kvadratroten av 8 over 2. Så kvadratroten av 8-- Hvis du tar kvadratroten av et tall som ikke er en perfekt firkant, så vil det bli irrasjonalt. Og så hvis du bare tar det irrasjonale tallet, og du multipliserer det, eller du deler det på noen som helst andre tall, så vil du fortsatt få et irrasjonalt tall. Så, kvadratroten av 8 er irrasjonalt. Selv om, du deler det på 2, så er det fortsatt irrasjonalt. Så det er ikke rasjonalt. Eller en annen måte å si det-- det er irrasjonalt. Nå har du pi. 3,14159 og det bare fortsetter, og fortsetter, og fortsetter for evig-- uten å noen gang gjentas. Så, det er irrasjonalt-- sannsynligvis det mest berømte av alle irrasjonale tall. 5,0. Vel, vi kan representere 5,0 som 5 over 1. Så, 5,0 er rasjonalt. Det er ikke irrasjonalt. 0,325. Vel, dette er det samme som 325 over 1000. Så, jeg kan helt klart presentere det som en ratio av heltall. Så, det er rasjonalt-- akkurat som jeg kunne presentere 5,0 som 5 over 1-- begge av disse er rasjonale. De er ikke irrasjonale. Her har vi 7,7777777-- og det bare fortsetter, og fortsetter og fortsetter, og fortsetter for evig. Og måten vi kan betegne det-- Du kunne bare si at disse dottene som sier at 7-erne bare fortsetter. Eller du kunne si 7,7-- og denne linjen viser 7-er delen-- den andre 7-eren-- bare fortsetter å bli repetert for evig. Nå, hvis du har et repeterende desimaltall-- i andre videoer, ville vi faktisk ha konvertert dem til fraksjoner. Men et repeterende desimaltall kan bli representert som en ratio av to heltall-- akkurat som 1/3-del er lik 0,333-- videre, og så videre, og så videre. Eller, jeg kunne si det på denne måten: Jeg kunne si 3 repeterende. Vi kunne også gjøre det samme for det. Jeg vil ikke gjøre det her. Men dette er rasjonalt-- så det er ikke irrasjonalt. 8 1/2? Vel, det er det samme som-- 8 1/2 er det samme som 17 halvdeler. Så det er helt klart rasjonalt. Så, de eneste to irrasjonale tallene er de to første rett her sånn.