Review complex number addition, subtraction, and multiplication.
Addition
left parenthesis, a, start subscript, 1, end subscript, plus, b, start subscript, 1, end subscript, i, right parenthesis, plus, left parenthesis, a, start subscript, 2, end subscript, plus, b, start subscript, 2, end subscript, i, right parenthesis, equals, left parenthesis, a, start subscript, 1, end subscript, plus, a, start subscript, 2, end subscript, right parenthesis, plus, left parenthesis, b, start subscript, 1, end subscript, plus, b, start subscript, 2, end subscript, right parenthesis, i
Subtraction
left parenthesis, a, start subscript, 1, end subscript, plus, b, start subscript, 1, end subscript, i, right parenthesis, minus, left parenthesis, a, start subscript, 2, end subscript, plus, b, start subscript, 2, end subscript, i, right parenthesis, equals, left parenthesis, a, start subscript, 1, end subscript, minus, a, start subscript, 2, end subscript, right parenthesis, plus, left parenthesis, b, start subscript, 1, end subscript, minus, b, start subscript, 2, end subscript, right parenthesis, i
Multiplication
left parenthesis, a, start subscript, 1, end subscript, plus, b, start subscript, 1, end subscript, i, right parenthesis, dot, left parenthesis, a, start subscript, 2, end subscript, plus, b, start subscript, 2, end subscript, i, right parenthesis, equals, left parenthesis, a, start subscript, 1, end subscript, a, start subscript, 2, end subscript, minus, b, start subscript, 1, end subscript, b, start subscript, 2, end subscript, right parenthesis, plus, left parenthesis, a, start subscript, 1, end subscript, b, start subscript, 2, end subscript, plus, a, start subscript, 2, end subscript, b, start subscript, 1, end subscript, right parenthesis, i
Want to learn more about complex number operations? Check out these videos:

Practice set 1: Adding and subtracting complex numbers

Example 1: Adding complex numbers

When adding complex numbers, we simply add the real parts and add the imaginary parts. For example:
=(3+4i)+(610i)=(3+6)+(410)i=96i\begin{aligned} &\phantom{=}(\blueD 3+\greenD4i)+(\blueD6\greenD{-10}i) \\\\ &=(\blueD3+\blueD6)+(\greenD4\greenD{-10})i \\\\ &=\blueD9\greenD{-6}i \end{aligned}

Example 2: Subtracting complex numbers

When subtracting complex numbers, we simply subtract the real parts and subtract the imaginary parts. For example:
=(3+4i)(610i)=(36)+(4(10))i=3+14i\begin{aligned} &\phantom{=}(\blueD 3+\greenD4i)-(\blueD6\greenD{-10}i) \\\\ &=(\blueD3-\blueD6)+(\greenD4-(\greenD{-10}))i \\\\ &=\blueD{-3}+\greenD{14}i \end{aligned}
Problem 1.1
left parenthesis, 7, minus, 10, i, right parenthesis, minus, left parenthesis, 3, plus, 30, i, right parenthesis, equals

Express your answer in the form left parenthesis, a, plus, b, i, right parenthesis.

Want to try more problems like this? Check out this exercise.

Practice set 2: Multiplying complex numbers

When multiplying complex numbers, we perform a multiplication similar to how we expand the parentheses in binomial products:
left parenthesis, a, plus, b, right parenthesis, left parenthesis, c, plus, d, right parenthesis, equals, a, c, plus, a, d, plus, b, c, plus, b, d
Unlike regular binomial multiplication, with complex numbers we also consider the fact that i, start superscript, 2, end superscript, equals, minus, 1.

Example 1

=2(3+4i)=2(3)+24i=6+8i\begin{aligned} &\phantom{=}\blueD 2\cdot(\blueD{-3}+\greenD{4}i) \\\\ &=\blueD2\cdot(\blueD{-3})+\blueD2\cdot\greenD4i \\\\ &=\blueD{-6}+\greenD8i \end{aligned}

Example 2

=3i(15i)=3i1+3i(5)i=3i15i2=3i15(1)=15+3i\begin{aligned} &\phantom{=}\greenD3i\cdot(\blueD{1}\greenD{-5}i) \\\\ &=\greenD3i\cdot\blueD1+\greenD3i\cdot(\greenD{-5})i \\\\ &=\greenD3i-15i^2 \\\\ &=\greenD3i-15(-1) \\\\ &=\blueD{15}+\greenD3i \end{aligned}

Eksempel 3

=(2+3i)(15i)=21+2(5)i+3i1+3i(5)i=210i+3i15i2=27i15(1)=177i\begin{aligned} &\phantom{=}(\blueD2+\greenD3i)\cdot(\blueD{1}\greenD{-5}i) \\\\ &=\blueD2\cdot\blueD1+\blueD2\cdot(\greenD{-5})i+\greenD3i\cdot\blueD1+\greenD3i\cdot(\greenD{-5})i \\\\ &=\blueD2\greenD{-10}i+\greenD3i-15i^2 \\\\ &=\blueD2\greenD{-7}i-15(-1) \\\\ &=\blueD{17}\greenD{-7}i \end{aligned}
Problem 2.1
8, dot, left parenthesis, 11, i, plus, 2, right parenthesis, equals

Your answer should be a complex number in the form a, plus, b, i where a and b are real numbers.

Want to try more problems like this? Check out this basic exercise and this advanced exercise.